History of Asia and Oceania Thyroid Association

Shigebnou Nagataki

Former President, Asia and Oceania Thyroid Association
Emeritus Professor, Nagasaki University
Director, Japan Radioisotope Association

7th Meeting of Asia and Oceania Thyroid Association
December 4, 2003 in Singapore

温故知新

論語

History has a lot to teach us about the future
The Analects of Confucius

First 1978 Singapore Ian B. Hales
Second 1982 Tokyo, Japan Nobuo Ui
Third 1986 Bangkok, Thailand S. Tandhanand
Forth 1989 Seoul, Korea Monho Lee
Fifth 1993 Leura, Australia Cres Eastman
Sixth 1997 Osaka, Japan T. Onaya
Seventh 2003 Singapore D. Khoo
The 1st AOTA Meeting 1978
Singapore, January 28-31, 1978

Scientific Sessions and Number of Papers

- Endemicity of Goitres: 10
- Pathogenesis of Endemic goitres: 9
- Goitre Control Programme: 6
- Thyroid function testing: 8
- Measurements of thyroid hormones and TSH: 11
- Specialised techniques (LATS): 8

Total: 52

Numbers of countries:

- Japan: 20
- Australia: 9
- India: 4
- USA: 3
- Brazil: 2
- Thailand: 2
- Burma: 1
- Canada: 1
- Indonesia: 1
- Pakistan: 1
- Philippines: 1
- Singapore: 1
- Sri Lanka: 1
- UK: 1

Total: 48

AOTA was established at 7th International Thyroid Congress in Boston in 1975

International Coordinating Committee of International Thyroid Congress at International Congress of Endocrinology in Hamburg in 1978

International Coordinating Committee of International Thyroid Congress at 8th International Thyroid Congress in Sydney in 1980
International Coordinating Committee of International Thyroid Congress at 8th International Thyroid Congress in Sydney in 1980

Slogan of AOTA
Catch up with and get ahead of other sister societies since AOTA is the youngest society
To advance the knowledge in basic and clinical thyroidology
To promote interest in the practice of medicine related to the thyroid and to promote research into allied subjects
To facilitate collaboration and exchange of information among individuals within the region.

To promote the scientific presentation
from and within AOTA

Establishment of strong program organizing committee

At the Beginning
We were active and happy in our laboratories and in AOTA
Application of the most advanced knowledge and techniques in thyroid fields
Public attention to thyroid disease
Investigation of thyroid brought us enough funding and was attractive to young people

Application of the most advanced knowledge and techniques in thyroid fields
*Use of radioisotope in clinical medicine and studies on hormone synthesis and release
*Concept of autoimmune diseases established in thyroid diseases
*New techniques of measurements of biomaterials from biochemical assay to immunoassay
Clinical uses of radioisotope

Establishment of
The Society of Nuclear Medicine
in Asia and Oceania region
with many friends in Thyroidology

Studies on thyroid hormone synthesis and release using radioactive iodine
Etiology. At present the cause of thyrotoxicosis is poorly understood. It has been assumed that in patients with exophthalmic goiter (Graves's disease) with diffuse enlargement of the thyroid gland, excessive thyrotrophic hormone might be responsible for the initiation of the syndrome. The not uncommon occurrence of hyperthyroidism associated with acromegaly provides further support for this theory. Convincing proof of this is lacking in most patients; however, in a large number of cases there is a clue in the correlation between episodes of psychic trauma, infections, injury, or other types of stress at the onset of thyrotoxicosis.
Public attention to thyroid diseases

Endemic goiter
one of the oldest disease in the world and
subjects suffering from endemic goiter is the
largest in the world

Establishment of the concept of Iodine Deficient
Disorders (IDD) and establishment of
International Coordination Committee of Iodine
Deficient Disorders (ICCIDD)
The 2th AOTA Meeting 1982
Tokyo, August 19-22,1982
President: N. Ui
Vice Presidents: V. Kumar
T.S. Reeve
P.P.B. Yeo
Secretary: S. Nagataki
LOC: Japan
Chairman: N. Ui
Secretary General: S. Nagataki
POC:
Chairman: K. Torizuka
Members: R. Hoschl
S. Nagataki
J.R. Stockigt
N. Ui
P.P.B. Yeo

The 3rd AOTA Meeting 1986
Bangkok, December 4-6,1986
President: S. Nagataki
Vice Presidents: J.R. Stockigt
S. Tanthanand
L. Villalodid
Secretary: J. Konishi
LOC: Thailand
Chairman: S. Tanthanand
Co-chairman: R. Suwinit
Y. Uahwatanasaksakul
T. Himathongkam
Secretary: R. Pleehachinda, W. Nitiyanant, N. Sritongkul,
C. Pattanachak, S. Seangjaew, N. Putraserat
POC:
Chairman: C.J. Eastman
Co-chairman: A. Vichayanrat
Members: M. Lee
M. Suzuki
G. Puavilai

The 4th AOTA Meeting 1989
Seoul, April 19-21,1989
President: S. Nagataki
Vice Presidents: J.R. Stockigt
S. Tanthanand
L. Villalodid
Secretary: J. Konishi
LOC: Korea
Chairman: Munho Lee
Secretary General: Chang-Soon Koh
POC:
Chairman: C.J. Eastman
Co-chairman: Y.K. Choi
Members: M. Lee
K.B. Huh
S. Tanthanand

The 5th AOTA Meeting 1993
Australia, May 2-5, 1993
President: S. Nagataki
Vice Presidents: Chang-Soon Koh
Chen Jia-Lun
J.R. Stockigt
Secretary: J. Konishi
LOC: Australia
Chairman: C. Eastman
POC:
Chairman: J.R. Stockigt
Members: N. Amino
B. Y. Cho
D. J. Topliss
Status and Prospects

The most important issue is to bring young scientists to thyroid fields

- Up-to-date sciences
- Enough funding for research
- Enough medical fee for ideal treatment in thyroid fields

To bring young people to thyroid fields is the responsibility of current leaders in each country

Responsibilities

How to promote the most up-to-date research in thyroid fields

How to appeal to the public and to bring the public attention

How to succeed to have enough funding

How to increase medical fee for ideal treatment of thyroid diseases

Management of thyroid diseases

Studies of pathophysiology

How much did we make progress since the establishment of AOTA

Treatment of thyroid diseases

No new treatment since the establishment of AOTA

How can we appeal to the public for funding thyroid diseases

Investigation with thyroid glands

Oncology

Thyroid cancer has variable types

- Well differentiated to anaplastic cancer from the same thyroid epithelial cells

Thyroid cancer can be detected from the very early stage, such as microcarcinoma

Thyroid cancer tissues or cells can be obtained by biopsy for microscopic as well as molecular examinations

Thyroid cancer can be increased by the known reason such as radiation and is age-dependent

Thyroid cancer can be treated by internal radiation as well as external radiation

Metastasis can be found by RAI and PET

Thyroid cancer is extremely useful for studies of oncology
Study Themes as Scientific Knowledge
Thyroid Cancer in Chernobyl

• 100-fold increase of cancer incidence in several years
 Unprecedented
• Opportunity to elucidate the mechanism of carcinogenesis
 Unprecedented

Importance of collecting biological materials
Importance of creating database for study subjects

Necessity of international collaboration system
(EU, USA, Japan, WHO)

Investigation with thyroid glands

Immunology

Prevalence of autoimmune thyroid diseases are the highest among autoimmune diseases
Remission and relapse can easily be recognized
Thyroid tissues and cells as well as infiltrated relevant cells can easily be obtained
Some autoantibodies have clear functions
Many autoantigens with functions are identified and cloned

Thyroid glands are the most ideal organ for studies of autoimmunity

Investigation with thyroid glands

Health effects of Environment

Public Health Issues

Iodine deficient disorders are still suffering the largest population in the world
Quantitative analysis of radiation effects is a paradigm for studying health effects of environmental disorders and thyroid diseases are the most important organ in radiation health effects
Hormone disruptors, such as, bisphenol A, PCB, etc. exerted its effects through thyroid hormone actions
Brain development is related to IDD and hormone disruptors

Thyroid gland can show a paradigm for studying health effects of environmental disorders
Investigation with thyroid glands
Life-style related diseases
Obesity, Hypertension, Hyperlipidemia, Diabetes,
Atherosclerosis, Osteoporosis, etc.

Thyroid hormone is well known to affect metabolism of all tissues and cells.
Investigation of thyroid hormone may relate how to manage these serious diseases called as death quartet.

Biggest appeal to the public

Up-to-date sciences in AOTA

Contribution of thyroid research through global collaboration with sister societies
ETA, ATA, LATS
has been and will be especially important to keep us in AOTA updated in the thyroid fields

In the Future
We will be active and happy in our laboratories and in AOTA
Investigation of thyroid and with thyroid will bring us enough funding and will be attractive to young people as it was in the past

Toast to the wonderful organ Thyroid!
Changes of Symposium Titles

<table>
<thead>
<tr>
<th>Titles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine and thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid physiology and hormone action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH receptor and Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic aspects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular thyroidology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid and pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid nodules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell biology and signal transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital hypothyroidism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Changes of Oral Session Titles

<table>
<thead>
<tr>
<th>Titles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goitre and iodine</td>
<td>25</td>
<td>28</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical tests with I-131</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmunity</td>
<td>8</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>6</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Hormone synthesis</td>
<td>19</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone action</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell biology and growth</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>20</td>
<td>14</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Genetic aspects</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroxine binding proteins</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonatal screening</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH receptor</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Advances</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium/Iodide symporter</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid development</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>